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ABSTRACT
Bipartite graph has been greatly studied to learn complex user-item rela-
tions on graph for personalized recommendation. Despite the great success
achieved, several limitations exist. Firstly, most works treat indirect nodes as
direct nodes, regardless of the intermediate nodes. This introduces massive
noises, since direct and indirect neighbors are intrinsically distinct for a
source node. Secondly, other than the necessary embedding parameters,
most works also rely heavily on “extra parameters”, resulting in verbose
training processes and burdensome models with proneness to overfitting.
Finally, the attention mechanism is mostly used to local key neighbors,
while attention on feature level is rarely utilized.

In this work, we propose to model the “conditional proximity”, which
emphasizes the decisive role of intermediate nodes playing in information
propagation and helps filter or enhance signals conditionally. We measure
the conditional proximity by feature-level attention, which propagates infor-
mation through pivotal feature channels to learn meaningful embeddings.
Without bringing in any “extra parameters”, we summarize our ideas and
develop a light graph-based framework for recommendation “HANABI”
(HNB). Comprehensive experiments on 2 public datasets shows HNB’s
superiority over state-of-the-art models.
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1 INTRODUCTION AND RELATEDWORK
Recommender systems (RSs) has been playing a non-negligible role nowa-
days in surprisingly many fields [7, 18], e.g. e-commerce, social media,
search engine. RSs mainly studies how to connect entities within the system
effectively and efficiently. Moreover, in real applications, overwhelmingly
growing amount of data also require a reliable RS to be light in weight
and simple in construction, such that fast inference can be achieved and
building and updating can be done on a more frequent basis.

To estimate users’ preferences for items, collaborative filtering (CF) is
the most popular method among the literature. CF predicts preferences
based on the assumption that similar users show resemblant behaviors and,
as a result, would interact similar items. In order to capture latent user-item
relations, most models embed both users and items as embedding vectors
of same dimensions in a common space. Among many classical methods,
matrix factorization (MF) utilizes inner products of users and items em-
beddings to infer observed interactions. Bayesian Personalized Ranking
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Figure 1: Illustration of Bipartite Graph.

Figure 2: Illustration of how indirect 2-order information flow
through intermediate nodes to source node.

(BPR) frames the regression problem in MF as a binary classification prob-
lem for implicit interactions, where users’ preferences are measured by
a probabilistic pairwise ranking function. Since deep learning showed its
superior capability of capturing complex patterns, researchers have also
adopted the idea in RSs and made CF models deeper. Neural Collaborative
Filtering (NCF) extends CF by stacking multiple layers with nonlinear acti-
vation functions. Collaborative Memory Network (CMN) combines CF with
memory network, which helps memorize users’ subtle preferences.

These models are then further improved by graph-based frameworks,
which enrich the sparse RSs with indirect information. DeepWalk, LINE
and Node2Vec have successfully caught high-order indirect relations and
generated representative nodes’ embeddings through random surfer [3].
In the domain of RSs, user-item interactions are typically constructed as a
bipartite graph first, where users and items have no direct edge with their
own kind, as shown in Figure 1. Then, pairs of neighbor nodes would be
collected by random walk sampling as training examples. An example of 1
and 2-order proximity can be found in Figure 2 (left).

Bipartite Network Embedding (BINE) is a graph embedding model for
general purposes, featured by emphasizing homogeneous relations between
user-user and item-item [3]. HOP-Rec is designed for RSs, which improves
a basic BPR model by adding indirect higher-order neighbors as training
examples [18]. CSE, inspired by HOP-Rec and LINE, adopts the idea of auxil-
iary context embedding which helps to simultaneously model higher-order
user-user, item-item, and user-item similarity [1]. More recently, NGCF
takes into account the node-to-node information propagation and explicitly
model this process in a recursive style over layers [17]. Multi-GCCF takes a
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step forward by not only modelling the information propagation but also
maintaining the intrinsic difference between users and items [13].

Graph-based methods empower CF to capture indirect high-order rela-
tions. There, however, still exist several limitations:

Limitation 1. Most graph-based models treat “high-order proximity”
in the same way as “direct proximity” by maximizing inner products of
pairs of neighbors’ embeddings, regardless of their different orders. Such
approach completely ignores intermediate node(s). Since direct and indirect
interactions are intrinsically different, treating them the same way would
introduce massive noises, resulting in sub-optimal solution. We argue that,
especially for indirect interactions, the decisive role of intermediate node(s)
should be modelled explicitly.

Limitation 2. To improve performance, most graph-based models em-
ploy “extra parameters/weights” in either training or both training and
inference. To clarify, for graph embedding model, we refer to any parame-
ters other than the “embedding matrix” as “extra weights”. “Extra weights”
include “context embedding”, “weights for linear transformation”, etc. First,
“extra weights” are rather burdensome and often imply complex compu-
tations. A robust RSs should be light in weight for fast inference and fast
updating. Second, heavier and deeper models are prone to overfitting, espe-
cially in extremely sparse settings such as RSs. Consequently, deep models
exhibiting powerful performance in experimental setting might not gen-
eralize well in real applications. Finally, it’s truth that training techniques
like drop-out and early-stopping can effectively alleviate overfitting. These,
however, require more laboring efforts on tuning hyperparameters, which
again is at cost of human efforts and computer resources [11].

Limitation 3. Feature-level attentive mechanism has not been utilized
in graph-based RSs studies. Although many works [15, 16] have employed
“node-level” attention to locate key neighbors for source nodes, the attention
on latent feature channels of embedding has not been explicitly exploited.
We argue that, due to the extreme sparsity and the heterogeneity of nodes
in RSs, a more fine-grained “feature-level” attention can better handle prop-
agation of information signals than “node-level” attention.

To alleviate the aforementioned problems, we propose our light graph
embedding model for RSs, “HANABI” (HNB) 1. HNB not only gets rid of ad-
ditional parameters both in training and inference, but also achieves superior
performance by explicitly modelling intermediate nodes and conditionally
measuring high-order proximity with feature-level attention.

Specifically, HNB first samples a pair of direct neighbors and treats them
as two source nodes. Then, starting from source nodes, multiple indirect
neighbors are sampled by an extended random walk for training. Next,
especially different from other works, HNB models high-order informa-
tion propagation conditionally. The process that information has to flow
through intermediate node(s) before arriving to source nodes is modelled
as “conditional proximity”. We design a feature-level attention mechanism
to capture these conditional dependencies.

To sum up, the main contributions of our work are as follows:
• Wepropose HNB, a light graph-based CFmodel for recommendation,
which gets rid of additional parameters, achieving fast inference,
allowing easy construction and being less prone to overfitting.

• We design “conditional proximity” to model the decisive process
that, before arriving to source nodes, information signals are filtered
or enhanced by intermediate nodes. Feature-level attention is used
to capture the conditional dependencies.

• Extensive experiments conducted on 2 datasets examine the effec-
tiveness of the conditional proximity and reveal the superiority of
HNB over state-of-the-art models.

2 OUR MODEL
Notation we use in this paper is summarized in Table 1.

1The model is named after the graph structure which looks like a firework and
“HANABI” (HNB) is “firework” in Japanese.

Table 1: List of Notations.

Symbol Definition

𝑈 , 𝐼 , 𝑢, 𝑖 User, Item set, A specific user, item
𝑁 𝑗 Set of direct neighbors of node 𝑗

𝜃 𝑗 ,Θ Embedding of node 𝑗 ; Entire embedding matrix
𝑑 , 𝑘 Size of embedding; Length of random walk
𝑠,m, 𝑒 Given an information flowing path, the source node,

intermediate node(s) and end node
𝑒+, 𝑒− Positive, negative end node
𝜂 Number of high-order neighbors to sample
𝑤𝑘 , 𝑤𝑜𝑑 𝑗

Length-aware decay factor; Outdegree-aware factor

2.1 Information Propagation in Graph
Graph-based method captures similarity between nodes by measuring the
quality and quantity of information flows (or edges). For example, as shown
in Figure 2(left), for a source node 𝑢2, all items 𝑖1∼4 are equally important,
because they are all direct neighbors and the edge weights, by default in
most RSs, are the same. The 2-order neighbors, 𝑢1 and 𝑢3, are not as close
to 𝑢2 as 𝑖1∼4, since they take two steps to reach 𝑢2. Furthermore, given that
𝑢1 has more paths to reach 𝑢2 than 𝑢3, 𝑢1 is more similar to 𝑢2 than 𝑢3.

Conditional Proximity. Although proximity can be partially obtained
by measuring the length and number of paths, such simple approach is not
enough to capture high-order complex relations, because indirect neighbors
have intrinsically different way of propagating information from direct (1-
order) neighbors. We argue that, intermediate node(s), which connect source
and end nodes, play a decisive role in high-order proximity. Illustrated in
Figure 2(right), a 2-order neighbor 𝑢1 has 2 paths to the source node 𝑢2,
where each path carries fundamentally different information depending on
the intermediate node, 𝑖1 or 𝑖4.

An intuitive example of how information propagates distinctly through
2 paths, [𝑒 →𝑚1 → 𝑠] and [𝑒 →𝑚2 → 𝑠], is as follows. Suppose a source
user (node 𝑠) has two friends, a scientist (𝑚1) and an artist (𝑚2), and they
both recommend a book (𝑒) to 𝑠 . User 𝑠 would probably be very inter-
ested because 𝑠 gets multiple suggestions of the same thing 𝑒 from two
1-order close friends. However, more interestingly, user 𝑠 might perceive the
two suggestion messages very distinctively. While the scientist𝑚1 might
give suggestion for educational purpose, the artist𝑚2 might recommend 𝑒
because of its aesthetic value. We, therefore, refer to the information propa-
gation being conditional on intermediate node as “conditional proximity”
and intermediate node as “conditional node”.

2.2 Node Embedding Layer
We first model both users and items embeddings in a common space as
an embedding matrix, whose parameters are all learnable, as other works
[1, 13, 17, 18]. The overall embedding matrix Θ takes the following form:

Θ = [𝜃𝑢1 , · · · , 𝜃𝑢 |𝑈 | , 𝜃𝑖1 , · · · , 𝜃𝑖 |𝐼 | ], Θ ∈ R( |𝑈 |+|𝐼 |)×𝑑 .
Then, for a node 𝑗 , its embedding vector 𝜃 𝑗 can be looked up from Θ

(where 𝜃 𝑗 ∈ R𝑑 and 𝑑 is the embedding size). This embedding matrix is
randomly initialized and the objective of our framework is to learn from the
observed data and optimize Θ, such that the embeddings are representative
of the graph structure and capture complex user-item relations.

It is also worth noting that to keep the model light, we refrain from
using any additional parameters. The single embedding matrix Θ contains
all learnable parameters that are necessary for the proposed HNB model.

2.3 Conditional Proximity with Feature-Level
Attention

Next, the measurement of various proximity is described. Especially, for
high-order neighbors, their proximity will be “conditional” on intermediate
node(s) and be measured by feature-level attention.
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Figure 3: Intuitive Example of how Feature-level Attention models Conditional Information Flowing. Best view in color.

For 1-order proximity. Following prior works [3, 14], the proximity
score between 𝑢 and its direct neighbor 𝑖 is measured by:

Prox(𝑢, 𝑖) = 𝜃⊤𝑢 𝜃𝑖 .

Since direct user-item interaction is the strongest signal when measuring
proximity, we use the inner product to ensure that the two embeddings
should be close across all dimensions.

For 2-order proximity. Unlike direct neighbors, we model high-order
proximity as conditional proximity, where the intermediate node is taken
into account as condition. Illustrated in Figure 3, we denote the conditional
proximity between a source node 𝑢 and its 2-order neighbor 𝑎𝑖3 as:

Prox(𝑢, 𝑎𝑖3 |𝑖),
where 𝑖 is the intermediate node connecting 𝑢 and 𝑎𝑖3.

To model Prox(𝑢, 𝑎𝑖3 |𝑖) and to emphasize the effect of intermediate
node, we propose to employ feature-level attentive mechanism. Ideally,
such mechanism should first aggregate features’ information from both
source node and intermediate node and then guide the information flows
to focus on only important features.

Prox(𝑢, 𝑎𝑖3 |𝑖) = [Atten(𝜃𝑢 , 𝜃𝑖 ) ⊙ 𝜃𝑢 ]⊤𝜃𝑎𝑖3 ,
where Atten(𝜃𝑢 , 𝜃𝑖 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜃𝑢 ⊕ 𝜃𝑖 ) .

The ⊕ and ⊙ are element-wise addition and product operation, the
Atten( ·) is the feature-level attention and the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( ·) is:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜃 )𝑙 =
𝑒𝜗𝑙∑𝑑
𝑗=1 𝑒

𝜗 𝑗
,

for 𝑙 = 1, . . . , 𝑑 and 𝜃 = (𝜗1, · · · , 𝜗𝑑 ) ∈ R𝑑 .
We utilize the ⊕ to model feature-level attention Atten( ·) , because when

considering further neighbors (e.g. Atten(𝜃0, 𝜃1, 𝜃2, 𝜃3)), the product ⊙ will
produce very small numbers, while the simpler adding is stabler.

The mechanism is intuitively explained in Figure 3. Supposed each di-
mension of embedding encodes an interpretable feature of preference, e.g.
dimension 0 for the feature “Trending”, then the source node 𝑢 has higher
preference for dimensions {0, 1, 3, 5} , while the intermediate node 𝑖 is
featured by dimensions {1, 2, 5}.

When modelling the 2-order proximity between {𝑎𝑖 · } and 𝑢, typical
graph models [1, 18] would treat it like the 1-order proximity and ignore the
intermediate node 𝑖 , which leads to massive noises being brought in to 𝑢
along the information flows. As discussed in section 2.1, a suggestion of an
item could be perceived differently depending on the intermediate node. A
feature-level attention can effectively fix this. It introduces the intermediate

node 𝑖 and constrains the information flows to pass through only significant
features of both 𝑢 and 𝑖 . Eventually, noisy features are filtered and key
features are enhanced. In the example,𝑢 finally receives information mainly
about “dim 1: Fashionable” and “dim 5: Modern” from the 2-order neighbors
𝑎𝑖 · through 𝑖 .

For evenhigher-order proximity.The same logic generalizes to higher
order. Take a 3-order proximity example from Figure 3. Consider a path
of information flow [𝑏𝑖32 → 𝑎𝑖3 → 𝑖 → 𝑢], the 3-order proximity is
computed:

Prox(𝑢,𝑏𝑖32 |𝑖, 𝑎𝑖3) = [Atten(𝜃𝑢 , 𝜃𝑖 , 𝜃𝑎𝑖3 ) ⊙ 𝜃𝑢 ]⊤𝜃𝑏𝑖32 ,
where Atten(𝜃𝑢 , 𝜃𝑖 , 𝜃𝑎𝑖3 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜃𝑢 ⊕ 𝜃𝑖 ⊕ 𝜃𝑎𝑖3 ) .

General Proximity Notation. To simplify the notations, we use a gen-
eral notation as follows for both conditional (high-order) and unconditional
(1-order) proximity:

Prox(𝑠, 𝑒 |m) =
{

Prox(𝑠, 𝑒) if 𝑘 = 1,
Prox(𝑠, 𝑒 | intermediate node(s)) if 𝑘 > 1, (1)

In Equation 1, m is a general symbol for intermediate node(s). In case of
1-order proximity (𝑘 = 1), m is ∅, indicating an unconditional proximity;
for 𝑘 = 2, m is the node between source 𝑠 and end node 𝑒 ; for 𝑘 = 3, m is
the set of intermediate nodes; and so on.

2.4 Reinforcing Conditional Proximity
We propose three components to emphasize the role of intermediate nodes
in high-order propagation and to reinforce the conditional proximity.

Length-Aware Decay Factor. As studied in [1, 17, 18], the strength
of proximity decays as the order gets higher. We take into account such
effect by integrating a length-aware decay factor: 𝑤𝑘 = ( 1

𝑘
)𝜏 , where 𝜏 is a

hyper-parameter and can be chosen in range (1, 8) . The purpose of 𝑤𝑘 is to
emphasize close relations and down-weight faraway pairs. 𝑤𝑘 is introduced
in the loss function in section 2.5.

Outdegree-Aware Factor. Moreover, node’s outdegree plays an impor-
tant role in measuring user-item relations as well [9, 17]. Given a node 𝑗 , its
outdegree-aware factor𝑤𝑜𝑑 𝑗

is obtained by:𝑤𝑜𝑑 𝑗
= 1

log( |𝑁 𝑗 |+2) ,where |𝑁 𝑗 |
is the number of direct neighbors of 𝑗 . The logarithm serves as a smoothing
function and the |𝑁 𝑗 | + 2 is to avoid situation where user or item has only 0
or 1 historical interaction. The𝑤𝑜𝑑 𝑗

is designed to be inversely proportional
to outdegree, because information coming from popular neighbor nodes
(those having high outdegree) are less important than information from
unpopular nodes (those having low outdegree) [9, 17].
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In RSs, this is particularly important. For instance, when a user interacts
with a popular item, this item actually does not provide much useful knowl-
edge about this user, since almost all users are interested in it. Conversely,
unpopular items (with low outdegree) carry much precious knowledge
about users, because users must have specific and strong preferences to buy
something others would ignore or dislike. Moreover, two users are likely to
be especially similar (in some aspects), if they both have interaction with a
very unpopular item.

Extended RandomWalks. There are 2 sampling methods often used
to augment training data in recent graph-based CF models. One is random
walk, which starts from a source node and collects one sample per step until
reaching walk length 𝑘 [1, 18]. The other one [13, 17], gathers all possible
neighbors on each order, similar to breadth-first search (BFS), generating
exponentially great number of training samples. The simple random walk
sampling is fast but is likely to miss meaningful neighbors, while the second
sampling method maintains perfect neighborhood information but is very
expensive to optimize in training.

To balance the two methods and to reinforce the conditional proximity,
we use a straightforward “extended random walk”. The random walk is
extended by collecting not only 1, but 𝜂 > 1 “indirect neighbors” in each
step. Note that, since we aim at collecting training samples to reinforce the
conditional proximity, the random walk is only extended when sampling
high-order neighbors. For example, in Figure 3, given an edge [𝑖 → 𝑢 ] in
dataset, the source node 𝑢 will eventually have one direct neighbor 𝑖 , three
2-order neighbors and nine 3-order neighbors when length 𝑘 = 3 and 𝜂 = 3.
This simple sampling can collect enough information without forcing too
heavy optimization in training. In experiments, we sample training data for
HNB this way in preprocessing.

2.5 Optimization and Complexity Analysis
Optimization is based on Bayesian Pairwise Ranking loss function (BPR)
[10], which utilizes positive and negative examples and has been widely
used in RSs [1, 17, 18].

Loss = −
∑

(𝑠,𝑒+,𝑒− )

3
√
𝑤𝑜𝑑𝑠𝑤𝑜𝑑𝑒+𝑤𝑜𝑑𝑒−

· log𝜎 (𝑤𝑘 · [Prox(𝑠, 𝑒+ |m) − Prox(𝑠, 𝑒− |m) ])
+ 𝜆 ∥Θ∥22,

where the set (𝑠, 𝑒+, 𝑒−) is the collection of sampled source node 𝑠 , positive
end node 𝑒+ and negative end node 𝑒−; the first term is the geometric mean
of the “𝑤𝑜𝑑 ” of 𝑠 , 𝑒+ and 𝑒−; the 𝜎 ( ·) is the sigmoid function; Θ is the
embedding matrix; 𝐿2 regularization ∥Θ∥22 with strength 𝜆 is uesd. The
estimated score is measured as the similarity between the target user and
candidate item: �̂�𝑢𝑖 = 𝜃𝑇𝑢 𝜃𝑖 .

Complexity analysis. Depending on the implementation, the com-
plexity may vary with {𝑑, |𝐸 | }, where 𝐸 are the edges of a graph. During
training, HNB performs vector operations 𝑂 ( |𝐸 |𝑑𝑘) , softmax 𝑂 (𝑑) and
SGD optimization𝑂 (𝑑) . As for the space of model storage, since the embed-
ding matrix contains all parameters of HNB, the space is𝑂 ( ( |𝑈 | + |𝐼 |) ·𝑑) .
Empirical computation times on Gowalla dataset are summarized.When
training, BPR, CSE, NGCF andHNB take about {21𝑠, 50𝑠, 75𝑠, 53𝑠 } per epoch.
when inference, BPR, CSE, NGCF and HNB take about {17𝑠, 17𝑠, 86𝑠, 17𝑠 }.
HNB has the same inference time as CSE and the simplest BPR, since they
have the same size of embedding matrix for inference.

3 EXPERIMENTS
We compare 7 baselines with the proposed HNB on 2 datasets with 3
metrics.

Table 2: Statistics of Datasets.

Dataset Sparsity Users Items Interactions

Amazon-Book 99.94% 52,643 91,599 2,984,108
Gowalla 99.92% 29,858 40,981 1,027,370

3.1 Experimental Settings
3.1.1 Datasets. Each dataset, summarized in Table 2, is representative of
a particular scenario in RSs (varies in sparsity, size). For all datasets, 72%
of a user’s historical items are randomly sampled as training set, 8% as
validation set for hyper-parameters tuning and 20% as test set. Amazon-
Book (large; sparse). Amazon-Book is the largest and most sparse dataset
in our experiments [5], reflecting real situations in e-commence and music
store. As in [6, 13, 17], we keep nodes with at least ten data and binarize the
ratings to {0, 1}.Gowalla (mid; sparse). Gowalla is collected by Gowalla [8],
where users interact with locations by checking-in. As in [6, 13, 17], we
only keep users with at least ten locations.

3.1.2 Baselines and Settings.
Model-base models:
• BPR [10] is a MF model specialized for implicit feedback data, which
replaces the MSE with the BPR loss function.
• NMF [7] is a deep-learning CF model incorporating the features of MF
and multilayer perceptron (MLP) with nonlinear activation.
• CMN [2] is a state-of-the-art model that simulates the memory net-
work [12] by integrating 2 “memories components” which enables reading
and writing latent features flexibly.
Graph-base models:
• RANK-CSE [1] is a state-of-the-art graph-basedmodel. Inspired by LINE [14],
CSE employs context embedding to improve training quality. We implement
the “ranking” variant of CSE in our experiments.
• PinSage [19] adopts the CNN structure from GraphSage [4] , a general
graph algorightm, for recommendation.
• HOP-Rec [18] is a graph-based CF model which approximates high-order
proximity by random walk sampling.
• NGCF [17] is a state-of-the-art graph-based model. which models the
massage propagation by stacking recursively “propagation layer”.
Parameter Settings. For fair comparison, the embedding size 𝑑 is set to
100 for all baselines, except for NGCF, which requires 64×3(194) [17]. Other
hyper-parameters of baselines are set as the same as their original works.
HNB2 and HNB3 are HNB with length 𝑘 = {2, 3} respectively. The number
of neighbors 𝜂 = 3; embedding size 𝑑 = {100, 150}; 𝜏 = 3; the negative
ratio is set as 5 for all models using BPR loss function. Evaluation Metrics.
3 widely-used metrics are used: Recall (Rec@20), Precision (Prec@20) and
Normalized Discounted Cumulative Gain (NDCG@20).

3.1.3 Comparative Experiments. Comparative experimental results are
summerized in Table 3.Amazon-Book (large; sparse). A large and sparse
dataset is representative of most e-commerce and music RS. Among base-
line models, RANK-CSE outperforms all others, attributed to its ability
in modelling user-user, item-item and user-item relations simultaneously.
Compared with HOP-Rec and PinSage, RANK-CSE takes into account the
effect of outdegree and also utilizes high-order neighbors to augment train-
ing set. RANK-CSE also has an extra “context embedding” when computing
high-order proximity. The purposes of the context embedding are to avoid
directly optimizing the vertex embedding because of the noisy signals from
high-order neighbors, and to help put attentions on key neighbors, resem-
bling a node-level attention. Based on our experiments, we argue that these
purposes can be better realized by the feature-level attention in HNB.

HNB makes greatest improvements over baselines on Amazon-Book
dataset than on other datasets. Specifically, HNB2 (d=150) improves 12.5%,
12.4% and 17.9% on 𝑅𝑒𝑐𝑎𝑙𝑙 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑁𝐷𝐶𝐺 . Compared to other
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Table 3: Comparative experiments for HNB. Best results are in bold. The symbol ‡ denotes the best baseline results.

@20 BPR NMF CMN RANK-CSE PinSage HOP-Rec NGCF HNB2
(d=100)

HNB2
(d=150)

HNB3
(d=150)

A
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k

(l
ar
ge

;s
pa

rs
e) Rec. 0.0256 0.0261 0.0284 0.0351‡ 0.0288 0.0309 0.0344 0.0372

(+6.0%)
0.0395
(+12.5%)

0.0397
(+12.7%)

Prec. 0.0121 0.0122 0.0130 0.0145‡ 0.0128 0.0124 0.0138 0.0153
(+5.5%)

0.0163
(+12.4%)

0.0164
(+12.9%)

NDCG 0.0520 0.0526 0.0597 0.0638‡ 0.0558 0.0606 0.0630 0.0700
(+9.7%)

0.0746
(+17.9%)

0.0760
(+19.0%)

G
ow

al
la

(m
id
;s
pa

rs
e) Rec. 0.1359 0.1388 0.1404 0.1049 0.1382 0.1399 0.1547‡ 0.1600

(+3.4%)
0.1646
(+6.4%)

0.1654
(+6.9%)

Prec. 0.0417 0.0430 0.0445 0.0324 0.0451 0.0456 0.0470‡ 0.0487
(+3.6%)

0.0500
(+6.4%)

0.0502
(+7.0%)

NDCG 0.1890 0.2023 0.2129 0.1712 0.1944 0.2128 0.2237‡ 0.2315
(+3.5%)

0.2382
(+6.6%)

0.2391
(+6.9%)

Table 4: Ablation Study.

Amazon-Book (@20) Recall Precision NDCG

BPR (𝑑 = 100) 0.0256 0.0121 0.0520
+ 𝑘-order Proximity (𝑘 = 3) 0.0263 0.0119 0.0517
+ Length-Aware Decay Factor 0.0298 0.0124 0.0576
+ Outdegree-Aware Factor 0.0315 0.0126 0.0603
+ Feature-level Attention 0.0367 0.0151 0.0702
+ Full HNB (𝜂 = 3) 0.0379 0.0155 0.0718

models, HNB considers the influence of intermediate node in the process
of information propagation and models it through feature-level attention.
These turn out to help capture more meaningful user-item interactions and
boost performance.

Gowalla (mid; sparse).Medium and sparse dataset is typical in many
RSs scenarios. NGCF is the best baseline model showing the benefits of
adding high-order neighbors and using training techniques like “message
and node dropout”. HNB outperforms baselines thanks to the feature-level
attention, which allows the information to propagate conditionally only
through important feature channels and filters noisy signals flowing from
high-order neighbors to source nodes.

3.1.4 Ablation Study. To evaluate the effectiveness of each component,
an ablation study is conducted. As shown in Table 4, experiments are on
Amazon-Book and the base model is BPR (𝑑 = 100) . First, it’s interesting to
notice that, without considering the effects of path length and outdegree,
the k-order proximity alone actually jeopardizes the performance. Second,
the designed feature-level attention significantly boosts the performance,
indicating the effectiveness of the conditional flowmechanism and the inter-
mediate nodes are indeed critical when optimizing with indirect neighbors.
Finally, the full HNBmodel is completed with training examples collected by
“extended random walks” in preprossing. The further improvement shows
that the conditional proximity is reinforced by adding more indirect samples,
which helps encode meaningful features in embedding.

4 CONCLUSION
In the work, we explore the importance of intermediate nodes and introduce
the concept of “conditional proximity” for high-order information propa-
gation. The process of conditional flowing is captured by a feature-level
attention mechanism, which helps model to focus on decisive feature chan-
nels when measuring high-order proximity. We summarize the ideas and
propose our HNB framework for RS. HNB is light in weight, with no extra
parameters, and superior in performance, supported by the comprehensive
experiments against state-of-the-art baselines. As future work, we plan
to extend HNB to a general graph embedding model not just for RSs, as
“conditional proximity” is a general concept for graph analysis.
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