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ABSTRACT
Carrying abundant side information, knowledge graph (KG) has
shown its great potential in enriching the sparsity of collaborative
filtering (CF) for recommendation. Although graph neural networks
(GNNs) have been successfully employed to learn user preferences
from KG and CF signals simultaneously, most models suffer from in-
ferior performance due to their deficient designs, i.e., 1) formulating
no distinction between users, items and KG entities, 2) confounding
KG signals with CF signals and 3) completely neglecting the effects
of edges, which is vital for graph information propagation.

In this paper, we propose a quad-channel graph model (X-2ch)
to tackle these problems. First, rather than lodging KG entities on
graph as nodes, X-2ch distills KG information and embeds them
as edge attributes in a bi-directional manner to model the natural
user-item interaction process. Second, X-2ch introduces a novel
quad-channel learning scheme, including a collaborative user-item
update and a CF-KG attentive propagation, to holistically capture
the interconnectivity of users and items while preserving their
distinct properties. Experiments on two real-world benchmarks
show substantial improvement over the state-of-the-art baselines.
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1 INTRODUCTION
Recommender systems (RSs) has been ubiquitously employed in
modern online businesses, e.g. e-commerce and social networks.
Among the literature, collaborative filtering (CF) is the most widely-
used technique. Through mining similar user patterns, CF provides
recommendations based on the assumption that similar users (e.g.
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watched alike movies) would be interested in resemblant items.
Generally, CF models represent users and items as embedding vec-
tors and formulate their interaction graph (as shown in Fig.1.a)
through some specialized operations [4, 12]. However, since the
user-item interactions lack explicit contextual information and rely
solely on latent relations, CF models suffer from cold-start and
sparsity problems. Recently, study of integrating knowledge graph
(KG) into CF frameworks has caught huge attention of researchers.
Through proper modeling, the rich side information, e.g. user/item
attributes, provided by KG (illustrated in Fig.1.b) can help RSs to
learn and understand users’ preferences better towards personal-
ized recommendations.

To effectively fuse the heterogeneous information of KG signals
and CF signals, graph neural networks (GNNs) naturally becomes
the primary method due to its flexibility and capability of captur-
ing long-range (indirect) user-item relations. Existing graph-based
methods can be categorized into 2 types: 1) path-based methods
[1, 16, 22], which compute proximity between users and items by
mining patterns of paths within KG entities, and 2) propagation-
based methods [15, 18, 21], which merge CF graph (user-item inter-
actions) and KG graph as a unified graph and “aggregate” informa-
tion for each node from its neighbors. Although these graph-based
KG-enhanced models have shown improvement over classic CF
models, they still suffer from the following limitations:

(1) Formulating no distinction between users, items and KG en-
tities. Most models embed these distinct subjects as identical
“nodes” on graph, regardless the intrinsic differences between
them. Moreover, as KG being used, distinctly modeling of
users and items becomes a necessity, since their differences
are amplified in the context of KG, where items have limited
KG attributes (e.g. written by 1 author) and are passively cho-
sen by users, while users normally have complex interests
in many different KG entities (e.g. loving 10 movie directors)
and are initiative.

(2) Confounding KG signals with CF signals when propagating
information on graph. These two signals convey very dif-
ferent yet complementary information [3, 6]. KG delivers
explicit contexts and attributes of items, which are especially
helpful for cold-start problem. For instance, if a user has only
watched “Titanic”, then a KG-based system can safely sug-
gest all other movies directed also by “James Cameron”. On
the other hand, CF aims at finding “latent patterns” among
users, which is more capable of giving diverse recommenda-
tions (e.g. not always from a same director) and capturing
subtle users’ preferences (e.g. preferring specific plot while
indifferent to the movie’s cast). Thus, properly dealing with
the 2 signals may lead to substantial improvement.
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Figure 1: An Example of the quad-channel aggregation for a specific user 𝑢1.

(3) Neglecting the effects of edges. Although “attributed edge”
has recently been studied for some applications, e.g. few-
shot learning and node importance [7, 8, 11, 14], current KG-
based recommendations only employ undirected and plain
edges with the sole purpose of linking nodes. The exceptional
flexibility of graph model is greatly underutilized when the
edges are completely neglected.

Given these observations, we propose X-2ch, a quad-channel CF
graphmodel propagating information over knowledge-aware edges.
The two most significant ideas behind X-2ch are: the knowledge-
aware edges and a quad-channel aggregation mechanism. Specif-
ically, rather than lodging KG entities on graph as nodes, X-2ch
distills KG information and embeds them as edge attributes tomodel
the natural user-item interaction process. Moreover, the “loaded
edges” are bi-directional, carrying different information according
to the corresponding graph flows. Furthermore, the quad-channel
aggregation propagates information to user and item nodes sepa-
rately via 2 tracks, CF-channel and KG-channel aggregation.

To sum up, the main contributions of our work are as follows:

• We propose a novel graph-based model for recommendation,
X-2ch, which is capable of learning representative user and
item embeddings by distributing information over knowledge-
aware edges through a quad-channel mechanism.

• To the best of our knowledge, this is the first work to explic-
itly embed KG attributes in edges in a bi-directional style for
recommendation.

• Comprehensive experiments, conducted on two real-world
benchmarks, demonstrate the superiority of X-2ch to state-
of-the-art baselines.

2 METHODOLOGY
2.1 Notations and Overall Structure
X-2ch is designed for recommendation task of the ubiquitous
implicit feedback [10], where user-item interactions are binary (e.g.
clicks or likes). Given a user 𝑢 ∈ 𝑈 and an item 𝑖 ∈ 𝐼 , X-2ch outputs
the probability 𝑦𝑢𝑖 measuring 𝑢’s preference to 𝑖 .

Specifically, X-2ch utilizes two graphs as inputs. User-Item Bi-
partite Graph (UIG), with abundant CF signals, consists of user-
item interactions <𝑢,𝑦𝑢𝑖 , 𝑖>, where 𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 and 𝑦𝑢𝑖 ∈ {0, 1}
is the indicator of the historical interaction. Knowledge Graph
(KG), rich of item attributes information, comprises knowledge
triplets <ℎ, 𝑟, 𝑡>, where the head entity ℎ denotes an item, the rela-
tion 𝑟 is an attribute type and the tail entity 𝑡 is the attribute value.

Algorithm 1: X-2ch Embeddings Generation Algorithm

Input :UIG <𝑢, 𝑦𝑢𝑖 , 𝑖> and KG <ℎ, 𝑟, 𝑡>.
Output :Users and Item embeddings
for 𝑙 = 1, · · ·, 𝐿 do

// User Node Update
for 𝑢 = 1, · · ·, |𝑈 | do

𝑒
𝑐𝑓 (𝑙+1)
𝑢 ⇐ CFAgg(𝑒𝑐𝑓 (𝑙 )𝑢 , 𝑒

𝑐𝑓 (𝑙 )
𝑖

) ; // CF-channel

𝑒
𝑘𝑔 (𝑙+1)
𝑢 ⇐ KGAgg(𝑒𝑐𝑓 (𝑙 )

𝑖
, 𝑒

𝑘𝑔 (𝑙 )
𝑖

, 𝑒𝐸 ) ; // KG-channel
end
// Item Node Update
for 𝑖 = 1, · · ·, |𝐼 | do

𝑒
𝑐𝑓 (𝑙+1)
𝑖

⇐ CFAgg(𝑒𝑐𝑓 (𝑙 )
𝑖

, 𝑒
𝑐𝑓 (𝑙 )
𝑢 ) ; // CF-channel

𝑒
𝑘𝑔 (𝑙+1)
𝑖

⇐ KGAgg(𝑒𝑐𝑓 (𝑙 )𝑢 , 𝑒
𝑘𝑔 (𝑙 )
𝑢 , 𝑒𝐸 ) ; // KG-channel

end
end
// Final User and Item Embeddings

𝑒𝑢 ⇐ 𝑒
𝑐𝑓 (𝐿)
𝑢 | |𝑒𝑘𝑔 (𝐿)𝑢 ;

𝑒𝑖 ⇐ 𝑒
𝑐𝑓 (𝐿)
𝑖

| |𝑒𝑘𝑔 (𝐿)
𝑖

;

Figure 2: Example of the CF and KG-channel aggregation.

For example, <𝑇𝑖𝑡𝑎𝑛𝑖𝑐, 𝑔𝑒𝑛𝑟𝑒, 𝐷𝑟𝑎𝑚𝑎> indicates that the movie Ti-
tanic is of the genre “Drama”. In Figure 1 (a. and b.), examples from
the perspective of a user 𝑢1 are shown.

The overall structure of X-2ch (described in Algorithm 1) is
in accordance with the 𝐿-layer GNNs framework, where states of
nodes get repeatedly updated from (𝑙) to (𝑙 + 1) layer by aggre-
gating messages from neighbors. Precisely, given the UIG, X-2ch
first construct k-order heterogeneous neighbor sets for users and
items to comprehend high-order interactions [5]. Next, knowledge
attributes are distilled from the KG and embedded in the edges to
link neighbors and source nodes. Finally, a quad-channel message
aggregation over knowledge-aware edges is conducted to update
states of nodes to the next layer. The quad-channel aggregation
implies that, on each layer (𝑙), user and item embeddings, 𝑒 (𝑙)𝑢 and
𝑒
(𝑙)
𝑖

, are updated independently and consist of a CF part 𝑒𝑐 𝑓 (𝑙) and
a KG part 𝑒𝑘𝑔 (𝑙) .



2.2 K-order Heterogeneous Neighbor Set
To learn complex user-item relationship, we construct K-order het-
erogeneous neighbor sets from UIG for users and items separately.
A UIG is represented by an incidence matrix M ∈ {0, 1} |𝑈 |× |𝐼 | ,
whereM𝑢𝑖 = 1 indicates positive interaction between 𝑢 and 𝑖 . To
capture the natural relation between users and items, the neighbor
set of users in X-2ch only consist of items, and vice versa.

For user 𝑢, her 1-order reachable item set is 𝑁 1
𝑢 = {𝑖 |M𝑢𝑖 ≠ 0}

and the k-order reachable item set is 𝑁𝑘𝑢 = {𝑖 | (M𝑘 )𝑢𝑖 ≠ 0}, where
M𝑘 = M(M⊤M)𝑘−1, for k>1.

For item 𝑖 , its 1-order reachable user set is 𝑁 1
𝑖
= {𝑢 |M𝑢𝑖 ≠ 0}

and the k-order reachable user set is 𝑁𝑘
𝑖
= {𝑢 | (M𝑘 )𝑢𝑖 ≠ 0}.

Different from most graph-base CF models, X-2ch only collects
heterogeneous neighbors, which we believe, through the proposed
aggregation strategy in next section, can better imitate the natural
interactive processes between the two intrinsically different sub-
jects, users (active; having complicated interests) and items (passive;
with limited attributes).

2.3 CF-channel Attentive Aggregation
X-2ch propagates information among nodes through 2 specific chan-
nels, CF-channel and KG-channel aggregation, to maintain their
individual properties. Through CF(or KG)-channel aggregation, the
corresponding embedding of the node gets updated to the next
layer, e.g. 𝑒𝑐 𝑓 (𝑙) → 𝑒𝑐 𝑓 (𝑙+1) .

For user 𝑢, we propose a feature-wise attention mechanism to
collect message from its k-order reachable items:

𝑒
𝑐 𝑓 (𝑙+1)
𝑢 =

𝐾∑
𝑘=1

1
𝑤𝑘 · |𝑁𝑘𝑢 |

∑
𝑖∈𝑁𝑘

𝑢

𝑊
(𝑙)
𝑐 𝑓

(𝜌𝑢𝑖 ⊙ 𝑒
𝑐 𝑓 (𝑙)
𝑖

), (1)

where ⊙ is the element-wise product operation,𝑤𝑘 , usually set to
1
𝑘2
, is the factor to account for neighbors of different orders and

𝑊 𝑙
𝑐 𝑓

∈ R𝑑 (𝑙+1)×𝑑 (𝑙 )
is the matrix projecting features from layer 𝑙 to

(l+1) and 𝑑 (𝑙) is the dimension of layer 𝑙 . The 𝜌𝑢𝑖 is the feature-
wise attention, which utilizes the similarity between source node
and its neighbor to refine the inflowing message. The (𝜌𝑢𝑖 ) 𝑗 , the
j-th feature of 𝜌𝑢𝑖 , is computed by:

(𝜌𝑢𝑖 ) 𝑗 =
𝑒𝑥𝑝 ((𝑒𝑐 𝑓 (𝑙)𝑢 ⊙ 𝑒

𝑐 𝑓 (𝑙)
𝑖

) 𝑗 )∑𝑑 (𝑙)
𝑔=1 𝑒𝑥𝑝 ((𝑒𝑐 𝑓 (𝑙)𝑢 ⊙ 𝑒

𝑐 𝑓 (𝑙)
𝑖

)𝑔)
, for 𝑗 = 1, ..., 𝑑 (𝑙) . (2)

For item 𝑖 , the CF-channel aggregation is computed in the same
manner:

𝑒
𝑐 𝑓 (𝑙+1)
𝑖

=

𝐾∑
𝑘=1

1
𝑤𝑘 · |𝑁𝑘

𝑖
|

∑
𝑢∈𝑁𝑘

𝑖

(𝜌𝑢𝑖 ⊙ 𝑒
𝑐 𝑓 (𝑙)
𝑢 )𝑊 (𝑙)

𝑐 𝑓
, (3)

.

2.4 KG-channel Attentive Aggregation
In the KG-channel aggregation, X-2ch formulates the message flows
to be propagated with the guidance of the knowledge-aware edges.

2.4.1 Knowledge-aware Edges. The purpose of the knowledge-
aware edges is, by integrating knowledge attributes, acting as filters
to refine knowledge signals propagating through KG-channel.

Given an item 𝑖 , we denote its related attributes set in KG as
𝐴𝑖 , then for each attributes 𝑎 ∈ 𝐴𝑖 , we have 𝑅𝑎 ∈ R𝑑𝐴×𝑑𝐴 and
𝑒𝑎 ∈ R𝑑𝐴 , which is the corresponding relation matrix and attribute
embedding (𝑑𝐴 is the dimension of attributes). For example, given
an item Titanic (one of its attribute a is {genre.drama}), we can
thus retrieve 𝑅𝑔𝑒𝑛𝑟𝑒 and 𝑒𝑑𝑟𝑎𝑚𝑎 . Correspondingly, for a user 𝑢, the
set of attributes that she prefers would consist of attributes of her
neighbor items: 𝐴𝑢 = {𝑎 |𝑎 ∈ 𝐴 𝑗 , 𝑗 ∈ 𝑁𝑢 }.

Then the knowledge-aware edges from a node 𝑗 (user or item)
on the l-th layer is:

𝑒
𝐸 (𝑙)
𝑗→· =𝑊 𝑙

𝐸 (
1

|𝐴 𝑗 |
∑
𝑎∈𝐴 𝑗

𝑅𝑎𝑒𝑎), (4)

where 𝑗 → · means its an out-going edge from node 𝑗 and𝑊 𝑙
𝐸
∈

R𝑑
𝑙×𝑑𝐴 is the matrix projecting attributes to the node embedding

space. Note that the edge attributes are bi-directional, indicating
the KG signal [𝑢 → 𝑖], 𝑒𝐸𝑢→·, is different from [𝑖 → 𝑢], 𝑒𝐸

𝑖→·.

2.4.2 Knowledge Aggregation. After the knowledge is embedded
in edges, X-2ch aggregates neighborhood message to the next layer,
(𝑒𝑐 𝑓 (𝑙)
𝑖

+ 𝑒𝑘𝑔 (𝑙)
𝑖

) → 𝑒
𝑘𝑔 (𝑙+1)
𝑢 , by aggregating KG embeddings with

support of CF signals and attention on edge attributes.
For user 𝑢, the KG-channel aggregation is:

𝑒
𝑘𝑔 (𝑙+1)
𝑢 =

𝐾∑
𝑘=1

1
𝑤𝑘 · |𝑁𝑘𝑢 |

∑
𝑖∈𝑁𝑘

𝑢

𝜌𝑖→𝑢 ⊙ (𝑊 (𝑙)
𝑘𝑔

𝑒
𝑐 𝑓 (𝑙)
𝑖

+ 𝑒
𝑘𝑔 (𝑙)
𝑖

), (5)

where𝑊 (𝑙)
𝑘𝑔

∈ R𝑑𝑙×𝑑𝑙 is the matrix to adjust CF embedding before
integrating with KG embedding and 𝜌𝑖→𝑢 is the edge attention
from 𝑖 to 𝑢:

(𝜌𝑖→𝑢 ) 𝑗 =
𝑒𝑥𝑝 ((𝑒𝑘𝑔 (𝑙)𝑢 ⊙ 𝑒

𝐸 (𝑙)
𝑖→· ) 𝑗 )∑𝑑 (𝑙)

𝑔=1 𝑒𝑥𝑝 ((𝑒𝑘𝑔 (𝑙)𝑢 ⊙ 𝑒
𝐸 (𝑙)
𝑖→· )𝑔)

, for 𝑗 = 1, ..., 𝑑 (𝑙) . (6)

For item 𝑖 , accordingly, the KG-channel aggregation is:

𝑒
𝑘𝑔 (𝑙+1)
𝑖

=

𝐾∑
𝑘=1

1
𝑤𝑘 · |𝑁𝑘

𝑖
|

∑
𝑢∈𝑁𝑘

𝑖

𝜌𝑢→𝑖 ⊙ (𝑊 (𝑙)
𝑘𝑔

𝑒
𝑐 𝑓 (𝑙)
𝑢 + 𝑒

𝑘𝑔 (𝑙)
𝑢 ), (7)

2.5 Discussion
First, the “bi-directional” edges, by distributing different messages,
can help complement the knowledge features 𝑒𝑘𝑔 for both users (in-
terested in complex attributes) and items (limited attributes). Espe-
cially for items that are “cold” in KG, the complementary messages
from user nodes are beneficial. For example, if 𝑖 is only described
as “genre.horror” in KG and most of 𝑖’s viewers 𝑁𝑘

𝑖
actually prefer

“genre.comedy”, then 𝑖 is highly likely to be a horror comedy movie,
which is omitted in KG.

Second, we design to integrate KG and CF embeddings via at-
tentions on knowledge attributes for KG aggregation. Not only it’s
beneficial for learning complex relations, but, more realistically,
this can help alleviate the “cold knowledge” problem [3, 6]. In fact,
KG also suffer sparsity issue and most existing works simply re-
move items that are “cold” in KG to prevent drop in performance
[3, 6, 18, 20]. We argue that this can be avoided by properly propa-
gating knowledge information with collaboration of CF signals.



Table 1: Datasets Statistics

Last-FM Amazon-Book

UIG Users / Item 23,566 / 48,123 70,679 / 24,915
Interactions 3,034,796 847,733

KG Entities / Relations 58,266 / 9 88,572 / 39
Triplets 464,567 2,557,746

2.6 Optimization
To represent users and items, X-2ch concatenate the CF-KG embed-
dings of the last layer 𝐿, 𝑒𝑢 = 𝑒

𝑐 𝑓 (𝐿)
𝑢 | |𝑒𝑘𝑔 (𝐿)𝑢 and 𝑒𝑖 = 𝑒

𝑐 𝑓 (𝐿)
𝑖

| |𝑒𝑘𝑔 (𝐿)
𝑖

,
where the ·| |· is the concatenation operation. The estimated score
is measured as the similarity between the target user and candidate
item: 𝑦𝑢𝑖 = 𝑒⊤𝑢 𝑒𝑖 . Since X-2ch is designed for the ubiquitous im-
plicit feedback settings, where data are binary (clicks or likes), we
leverage the Bayesian Pairwise Ranking loss function (BPR) [13] to
complete the loss function:

L = −
∑

(𝑢,𝑖+,𝑖−) ∈P
− ln𝜎 (𝑦𝑢𝑖+ − 𝑦𝑢𝑖− ) + 𝜆∥Θ∥22,

where 𝜎 (·) is the sigmoid function, P denotes the pair-wire training
set, 𝑖+ is the positive item interacted by user 𝑢 and 𝑖− is a randomly
sampled negative example. 𝜆 is the regularization parameter and Θ
indicates all trainable parameters.

3 EXPERIMENTS
3.1 Experiment Settings
Datasets. A description of the datasets are in Table 1. We adopt
a 72-8-20 split [2, 5, 18, 19], where 72%, 8% and 20% of a user’s
historical items are randomly sampled for training, validation and
testing, respectively. Last-FM is collected and managed by last.fm
website, where music tracks are items to recommend. Amazon-
Book comprises user reviews to books on amazon.com website.
As in [5, 15, 18], we keep nodes with at least ten data and binarize
the ratings to {0, 1}. To construct the KGs for both datasets, we
follow [16, 18] by matching items into Freebase KG database and
collecting up to two-hop neighbor attributes for each item.

Baseline Models and Settings. The embedding size is set to
64 (for X-2ch, meaning 𝑑𝑐 𝑓 (𝐿) = 𝑑𝑘𝑔 (𝐿) = 32.), except RippleNet is
set as 16 due to its heavy computation [16, 18].

• CKE [22] is a classic KG-enhanced model, which merges
knowledge from TranR [9] to augment the basic CF model.

• RippleNet [16] is a path-based model. Users embeddings
are represented by item attributes from pre-defined paths.

• KGCN [17] is a propagating-based model. It enhances the
GNNs to learn contextual and structural information from
KG and UIG simultaneously.

• KGAT [18] is a state-of-the-art model, which models users,
items and KG entities identically and propagate on a unified
graph constructed from UIG and KG.

• CKAN [20] is a state-of-the-art model, which associates
users and items with their neighbor knowledge entities and
performs propagation on the KG.

Evaluation Metrics. Performance is evaluated upon the out-
putted top-20 recommended items by 2 widely-used metrics: Recall
(Rec@20) andNormalized Discounted Cumulative Gain (NDCG@20).

Table 2: Experimental results. Best results are in bold and ‡ denotes
the best baselines. 𝐿 in X-2ch(𝐿) indicates total number of layers.

@20 Last-FM Amazon-Book
Rec. NDCG Rec. NDCG

CKE 0.0736 0.1184 0.1343 0.0885
RippleNet 0.0791 0.1238 0.1336 0.0910
KGCN 0.0804 0.1281 0.1329 0.0900
KGAT 0.0870 0.1325 0.1489‡ 0.1006‡
CKAN 0.0875‡ 0.1337‡ 0.1423 0.0998

X-2ch(1)
0.0897
(+2.55%)

0.1385
(+3.20%)

0.1536
(+3.16%)

0.1049
(+4.35%)

X-2ch(2)
0.0906
(+3.54%)

0.1392
(+3.72%)

0.1570
(+5.44%)

0.1075
(+6.83%)

X-2ch(3)
0.0886
(+1.29%)

0.1366
(+1.78%)

0.1525
(+2.45%)

0.1040
(+3.40%)

3.2 Results Analysis
Experimental results are summerized in Table 2.

Study of X-2ch of different numbers of layers can be found at
the bottom of Table 2. Though X-2ch(2) is the best variant, X-2ch(1)
already shows significant improvements over the best baselines,
supporting the efficacy of the quad-channel design in simultane-
ously learning from CF and KG. X-2ch(3) underperforms its variants
of less layers, implying that stacking multiple X-2ch layers might
require stronger regularization or it might lead to overfitting.

Baselines comparisons. On both datasets, X-2ch outperforms
CKE, which validates the effectiveness of utilizing high-order neigh-
bor information. X-2ch also shows better results than RippleNet.
While X-2ch dynamically and individually updating users and items,
RippleNet forces users to be only represented by pre-sampled Rip-
pleSets, which hinders the learning of complex interactions. The
superiority of X-2ch over KGCN justifies the necessity of explicitly
modeling CF signals. Though KGAT is the best baseline on Amazon-
Book, the way it formulates no distinction between users, items and
KG entities on a unified graph seems to restrict the ability to dis-
cern the differences between these subjects. Finally, CKAN, while
naturally combining CF and KG signals via the initial neighbors
sampling on early stage, fails to further explore the CF-KG related-
ness during message propagation. Overall, X-2ch outperforms all
baselines thanks to the quad-channel aggregation strategy which
also propagates message over knowledge-aware edges.

4 CONCLUSION AND FUTUREWORK
In the work, based on the inspection of current limitations, we
proposed a novel graph recommendation model, X-2ch, which not
only passes information via quad-channel attentive aggregations,
but also innovatively embeds knowledge bi-directionally in edges
to filter information flows. The effectiveness is supported by exper-
iments. As future work, we plan to further explore effects of each
components of X-2ch and to include other knowledge, e.g. text or
demographic data, in edges so as to adapt the RS for other targets,
e.g. diversity or explainability.
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